P41.2 \(\frac{1}{2} \)

P41.4 (a) 4 (b) 6.03 eV

P41.6 \(9.56 \times 10^{12} \)

P41.8 \(\left(\frac{3\hbar}{8m_e c} \right)^{1/2} \)

P41.10 (a) 5.13 meV (b) 9.41 eV (c) The much smaller mass of the electron requires it to have much more energy to have the same momentum.

P41.12 (a) \(\left(\frac{15\hbar}{8m_e c} \right)^{1/2} \) (b) \(1.25\lambda \)

P41.14 (a) \(\frac{L}{2} \) (b) \(5.26 \times 10^{-5} \) (c) \(3.99 \times 10^{-2} \) (d) See the solution.

P41.16 (a) 0.196 (b) The classical probability is 0.333, significantly larger. (c) 0.333 for both classical and quantum models.

P41.18 (a) \(\frac{L}{2} - \frac{1}{2\pi} \sin \left(\frac{2\pi \ell}{L} \right) \) (b) See the solution. (c) The wave function is zero for \(x < 0 \) and for \(x > L \). The probability at \(\ell = 0 \) must be zero because the particle is never found at \(x < 0 \) or exactly at \(x = 0 \). The probability at \(\ell = L \) must be 1 for normalization. This statement means that the particle is always found somewhere at \(x < L \). (d) \(\ell = 0.585L \)

P41.20 See the solution; \(\frac{\hbar^2 k^2}{2m} \)

P41.22 (a) \(\frac{\hbar^2}{2mL^2} \left(\frac{4x^2}{L^2} - 6 \right) \) (b) See the solution.

P41.24 (a) \(\psi_1 (x) = \sqrt{\frac{2}{L}} \cos \left(\frac{\pi x}{L} \right) \) \(R_1 (x) = \frac{2}{L} \cos^2 \left(\frac{\pi x}{L} \right) \) \(\psi_2 (x) = \sqrt{\frac{2}{L}} \sin \left(\frac{2\pi x}{L} \right) \) \(P_2 (x) = \frac{2}{L} \sin^2 \left(\frac{2\pi x}{L} \right) \)

\(\psi_3 (x) = \sqrt{\frac{2}{L}} \cos \left(\frac{3\pi x}{L} \right) \) \(P_3 (x) = \frac{2}{L} \cos^2 \left(\frac{3\pi x}{L} \right) \) (b) See the solution.

P41.26 See the solution.

P41.28 \(1.03 \times 10^{-3} \)

P41.30 (a) 0.903 (b) 0.359 (c) 0.417 (d) \(10^{-6.59\times10^{12}} \)
P41.32 85.9

P41.34 3.92%

P41.36 (a) See the solution. \(b = \frac{m\omega}{2\hbar} \) (b) \(E = \frac{3}{2} h \omega \) (c) first excited state

P41.38 (a) \(B = \left(\frac{m\omega}{\pi \hbar} \right)^{\frac{1}{4}} \) (b) \(\delta \left(\frac{m\omega}{\pi \hbar} \right)^{\frac{1}{2}} \)

P41.40 See the solution.

P41.42 (a) \(2.00 \times 10^{-10} \text{ m} \) (b) \(3.31 \times 10^{-24} \text{ kg} \cdot \text{m/s} \) (c) 0.172 eV

P41.44 See the solution.

P41.46 (a) See the solution. (b) 0.092 0 , 0.908

P41.48 (a) See the solution. (b) 0.200 (c) 0.351 (d) 0.377 eV , 1.51 eV

P41.50 (a) \(\frac{h^2}{4mL^2} , \frac{5h^2}{8mL^2} , \frac{h^2}{mL^2} , \frac{5h^2}{4mL^2} \) (b) See the solution, \(\frac{3h^2}{4mL^2} \)

P41.52 (a) \(\frac{2}{\sqrt{L}} \) (b) 0.409

P41.54 (a) \(\sqrt{\left(\frac{nhc}{2L} \right)^2 + m^2 c^4 - mc^2} \) (b) 46.9 fJ; 28.6%

P41.56 (a) \(\frac{3h \omega}{2} \) (b) \(x = 0 \) (c) \(\pm \sqrt{\frac{\hbar}{m\omega}} \) (d) \(\left(\frac{4m^3 \omega^3}{\pi \hbar^3} \right)^{\frac{1}{4}} \) (e) 0 (f) \(8\delta \left(\frac{m\omega}{\hbar \pi} \right)^{\frac{1}{2}} e^{-4} \)

P41.58 (a) 0 (b) 0 (c) \((2a)^{-\frac{1}{2}} \)