HEAT AND TEMPERATURE
Heat vs. Temperature

- Both heat and temperature are related to the Kinetic Energy of molecules in a substance
 - Often called “thermal energy”

- Temperature is the average KE of the molecules
 - It is something a physical system has

- Heat refers to the total amount of energy transferred from one system to another
 - It is something a physical system does
Heat Transfer

- When two objects come in contact:
 - Heat is given from the hotter object to the colder one
 - Until both objects reach the same temperature

- The amount of heat exchange depends on:
 - Starting temperatures (bigger difference → more heat)
 - Size of objects
Specific Heat

• Different materials respond differently to heat
 – Some change temperature easily (little heat required)
 – Others absorb heat with only a small temperature change

• A material's “Specific Heat”:
 – Translates heat to temperature change
 – Small Specific Heat: temperature changes easily
 – Large Specific Heat: much heat required to change temp

• Water has a very high specific heat
 – Very good at cooling objects → it “eats” heat energy
 – Temperature near the ocean is usually mild
Thermal Expansion

• Hot substance \rightarrow Large motions of molecules
 - Causes the substance to expand
 - Amount of expansion depends on the material

• Must be considered in buildings and devices
 - Often expand and contract with changes in temperature
Example: Thermostat

- Uses a coiled “bimetallic strip”
 - Two strips of metals with different expansion tendencies
 - Temperature increases → coil gets tighter
 - Temperature decreases → coil unwinds

- When temperature reaches a certain value:
 - Can connect a circuit to turn a heater on/off
 - Allows for automated control of temperature
Thermal Expansion of Water

- Water has very unusual thermal properties
 - Freeze water → it expands (most substances compress)
 - So ice at 0° C is less dense than water at 0° C

- As a result, ice floats in water

- Expansive force of freezing water is very strong
 - Water in small cracks can tear apart roads... and mountains!
Methods of Heat Transfer

- **Conduction**
 - Two substances in physical contact → direct heat exchange
 - Different materials → very different heat conductivity
 - Metals are often good heat conductors

- **Convection**
 - Motion of a fluid (liquid or gas) carries heat with it
 - Evident in the “churning” motion of boiling water

- **Radiation**
 - Hot objects give off energy as electromagnetic waves
 - The hotter the object, the more energy it gives off
Heat Transfer Examples

● (40° F air) vs. (40° F water)
 – Which is more damaging to humans?
 – Water is 30 times more conductive of heat
 – Hypothermia sets in very quickly in cold water

● Winds near the shore
 – Water and land heat at different rates
 – Convection currents move the heat
 – Winds blow onshore during day...
 – ...and offshore at night
The Greenhouse Effect

- Earth's energy balance:
 - Input: Absorption of sunlight (incident energy – reflected energy)
 - Output: Earth gives off radiation (due to temperature)

- If energy input = energy output:
 - Earth's average temperature stays the same

Ways to change Earth temperature:

1) Reflect more/less energy
 - Ice and clouds reflect sunlight

2) Radiate more/less energy
 - Greenhouse gases block radiation
 - \(\text{CO}_2 \), Methane, etc.
Phase Change

- Solid, Liquid, Gas, Plasma
 - The 4 “phases” of matter

- To change the phase of a substance:
 - Must change the temperature and/or pressure
Latent Heat

• “Extra” heat is exchanged during a phase change
 - This heat does **NOT** cause a change in temperature

• $0^\circ \text{C} \rightarrow$ Ice melts to become water...
 - ...but before the water raises to $1^\circ \text{C} \rightarrow$ Need **latent heat**
 - This makes phase change a **slow** process

Latent heat needed for phase change:

Can be large compared to the heat required for temperature change
Latent Heat Example: Sweat

- Mechanism to avoid body overheating
 - Uses Latent Heat of Evaporation to cool body

- How does it work?
 - Heat conducts from skin to liquid sweat until it evaporates
 - Evaporation process pulls heat out of the body quickly

- So is sweat “boiling” off the body?
 - No (not hot enough), but some evaporation still occurs at temperatures below the boiling point
 - Boiling is not the same thing as evaporation
Summary

- Heat moves from hot substances to cold ones
 - 1) Conduction, 2) Convection, 3) Radiation

- Hot objects expand, cold objects contract

- Latent Heat is required to change phase
 - In addition to the necessary temperature and pressure